
Pithya User Manual

April 19, 2018

Contents

1 Introduction 3

2 Installation 6
2.1 Download . 6
2.2 Dependencies . 6
2.3 Build . 7

2.3.1 Core and CLI . 7
2.3.2 GUI . 8

3 Common information 9
3.1 Executables . 9
3.2 Model Syntax . 10
3.3 Properties Syntax . 14

3.3.1 CTL . 14
3.3.2 HUCTLP . 15

3.4 Results Output Format . 17
3.4.1 Text Format . 17
3.4.2 JSON Format . 18

4 Command Line Interface 20
4.1 Run . 20
4.2 Arguments of pithya executable 20

4.2.1 Input and Output . 20
4.2.2 Verification Options 21

4.3 Arguments of pithyaComponents executable 22
4.3.1 Input and Output . 22
4.3.2 Other Options . 22

4.4 Example of Use . 23

1

5 Graphical User Interface 24
5.1 GUI in General . 24
5.2 Editor . 24

5.2.1 Control Panel . 24
5.2.2 Editor Panel . 26

5.3 Explorer . 27
5.3.1 Control Panel . 27
5.3.2 Plot Area . 28

5.4 Results . 31
5.4.1 Result Control Panel 31
5.4.2 Plot Area . 33

Bibliography 37

2

Chapter 1

Introduction

Pithya is a tool for parameter synthesis of ODE-based models of dynamical
systems and properties specified in a hybrid extension of Computational
Tree Logic (CTL) with past called HUCTLP [BBD+16b]. Since version
1.2.0 it also supports detection of attractors — terminal strongly connected
components (tSCCs) — in the same type of models [BBB+17]. Figure 1.1
depicts the architecture of the Pithya tool. The tool consists of three parts:
the main part composed of several stand-alone executables, the graphical
user interface (GUI) used for model design and result visualisation, and the
command-line interface (CLI).

Figure 1.1: Basic architecture of Pithya with its main parts.

To perform the parameter synthesis task or the analysis of attractors,
the user has to provide an ODE-based model. The model input file (.bio) is
written as a set of equations with parameters; the syntax of the equations is

3

given in Section 3.2. For parameter synthesis process, the properties input
file (.ctl) written as a set of HUCTLP formulae is also needed; the syntax
of the formulae is given in Section 3.3.

The model input file is first run through the approximation engine, a stand-
alone executable that approximates the functions appearing in the ODEs of
the original model into a piecewise multi-affine model (using the technique
defined in [GBF+11]). The accuracy of the approximation is guided by the
settings provided in the model input file (see Section 3.2). The resulting
approximated model file is again expressed in terms of the .bio file format
and it’s used to generate a discrete abstraction (transition state space) of a
particular dynamic model. This process also provide the syntax check of a
model.

The result of the approximation (along with a property file, if needed) is
then presented to the core engine consisting of several executables. In case
of the parameter synthesis the core engine also provides a syntax check of
the property file with respect to the approximated model. The core engine
consists of two functional parts: a) the state-space generator employs the
rectangular abstraction (as defined in [BYWB07,GBF+11]) to discretise the
ODE model; b) the parameter-synthesis engine and the attractor-analysis
engine then perform a particular analysis.

The parameter synthesis is based on the parallel semi-symbolic coloured
model checking [BBD+16a, BBD+16b]. To do so, the engine employs an
external SMT solver (we currently use Z3 [dMB08]) or a set of internal
solvers.

The attractor analysis is based on an efficient parallel algorithm for
detection of terminal strongly connected components (tSCCs) in parametrised
graphs representing dynamics of a system [BBB+17]. It is supplied with a
heuristic improving expected computation times.

While the core engine is running an analysis, it sends progress information
to the standard output. After an analysis has finished, the results are produced
in one of the two available output formats: JSON [Bra14] (to be used for
further processing in the GUI) or textual human-readable form.

The command-line interface (CLI) encapsulates all the stand-alone exe-
cutables so that the user only needs to provide the model input file and the
properties file (for parameter synthesis). The executables are run automati-
cally and provide the result of a particular analysis in the selected output
format. The various CLI options are described in detail in Chapter 4.

The graphical user interface (GUI) consists of three parts. The Editor
allows the user to load, edit and save the description of the model and
the properties of interest. The Explorer is used to investigate the model

4

behaviour and its approximated transition state space. The Results visualiser
provides an interactive visual analysis of the computed results. For more
information about the possibilities of the GUI see Chapter 5.

5

Chapter 2

Installation

2.1 Download
The latest version of the Pithya core (including the approximation engine,
the parser and the CLI) can be downloaded from:

https://github.com/sybila/pithya-core
The GUI part can be downloaded from:

https://github.com/sybila/pithya-gui
The Pithya core and CLI is written in Java so it can be used on any desktop
platform supporting Java. The GUI is written in the R language, which can
be downloaded for any of the widely-used OSs from:

https://cran.r-project.org/mirrors.html

The Pithya core can be either downloaded as a pre-built archive (available
in the release section of the corresponding Github page) or it can be built
directly from source. To built Pithya core from source, follow the instructions
in Section 2.3.

2.2 Dependencies
To run Pithya with the CLI, you need to have Java 8+ and Microsoft
Z3 4.5.0 installed (Z3 is required only for models with affine parameter
dependence). If your OS is supported, we strongly recommend downloading
precompiled Z3 binaries from:

https://github.com/Z3Prover/z3/releases
(Although Pithya allows you to specify custom Z3 location, we also strongly
recommend to add Z3 to your PATH and LD_LIBRARY_PATH to prevent any

6

https://github.com/sybila/pithya-core
https://github.com/sybila/pithya-gui
https://cran.r-project.org/mirrors.html
https://github.com/Z3Prover/z3/releases

platform-specific linking issues.)
The GUI needs R version 3.3.+ with the following libraries installed:

• shiny 1.0.0

• shinyjs 0.8

• shinyAce 0.2.1

• shinyBS 0.61

• stringr 1.1.0

• rjson 0.2.15

• pracma 1.9.5

• data.table 1.9.8

• matrixcalc 1.0-3

at least in these versions with all of their dependencies. For more information
about the installation procedure see the following section.

2.3 Build

2.3.1 Core and CLI

Pithya can be directly built from source if needed. After the repository
https://github.com/sybila/pithya-core is cloned to your file system,
you can run one of the following commands in the root folder of the tool (on
Windows, replace ./gradlew with ./gradlew.bat):

• To build Pithya and place the unpacked distribution into ./build/install/pithya,
run:
./gradlew installDist

• To build Pithya and place the distribution archive into ./build/distributions,
run:
./gradlew distZip

(If you have a local gradle1 installation, you can replace ./gradlew with
gradle for faster build.).

To also support the attractor analysis, use version 1.2.0 or higher.
1gradle is a build automation system for Java, see https://github.com/gradle/gradle

7

https://github.com/sybila/pithya-core
https://github.com/gradle/gradle

2.3.2 GUI

First, clone the repository https://github.com/sybila/pithya-gui to
your file system and place the lib and bin folders from your Pithya core
distribution (either downloaded from Github or built from source) into
pithya-gui/core. To run the GUI you further need to install the R language
including the libraries specified in Section 2.2. The R language tool suite is
available at https://cran.r-project.org/mirrors.html with guides and
advices for all usual OSs.

If you have super-user rights, running the command
Rscript /path/to/pithya-gui/runMe.R

will automatically install all needed packages (Pithya GUI itself does not
require super user rights, only the installation process may require you to be
authenticated as device administrator). If you do not have super-user rights,
you need to install the packages manually by running the command R that
opens R interactive mode. Then call the following:

install.packages(”name_of_package”) – for each of the packages.
According to the developers, you are advised to run the update.packages()
command before install.packages to ensure that any already installed
dependencies have their latest versions. To close the interactive R mode you
have to type q().

Finally, to run the GUI, go into the pithya-gui folder and run the
command:

Rscript runMe.R
This starts the application server in the background. Open a browser and
point it to the address: http://127.0.0.1:8080, the GUI should appear.
It is possible to open more than one session in this way. To end a session
just close the tab. To end the application server press Ctrl+C inside the
terminal.

8

https://github.com/sybila/pithya-gui
https://cran.r-project.org/mirrors.html

Chapter 3

Common information

3.1 Executables
Apart from the main executable called pithya, Pithya core also contains the
approximation engine pithyaApproximation, the attractor analysis engine
pithyaComponents and several proprietary executables which are used by
the GUI (they cover the same functionality, but their input parameters are
adapted to the needs of the GUI). Furthermore, the functionality of the
approximation engine can be also performed by the main binary if needed
(however, it might be useful to pre-compute the approximated model and
reuse it over experiments).

The approximation engine reads the input model from standard input,
performs the approximation and prints the result to standard output. Addi-
tionally, it can be called with option --fast, in which case it will use faster
but less precise approximation algorithm, and option --cut-to-range, in
which case it will not create new thresholds below or above the original
variable range.

The pithya executable takes as command line arguments a .bio model
and a .huctl property files and after performing the parameter synthesis
prints the results to the desired location. For detailed description of pithya
executable with it’s arguments, see Section 4.2.

Another important executable is the engine for attractor analysis of
dynamical systems called pithyaComponents. It, too, takes a .bio model
file as an input parameter and returns results in machine-readable JSON
format. Beside that, a user can specify a few optimization parameters:
a) an algorithm type specifying the form of parallelism employed (Branch
= dist or Reach = local); b) a state selection heuristic specified by the

9

presence of the option --disable-heuristic. For detailed description of
pithyaComponents executable with it’s arguments, see Section4.3.

3.2 Model Syntax
This section describes the syntax of model files (the .bio format). Every
model file has to contain at least the following parts: declaration of model
variables and corresponding thresholds (at least two numeric values have
to be defined as the lower and upper bound thresholds for each variable),
declaration of parameters (each with a lower and upper bound), and differ-
ential equations (one for each variable). The corresponding lines start with
predefined keywords and have the following syntax:

• VARS: variables (mandatory, just one occurrence) where variables
is a list of variable names delimited by comma (,).

• PARAMS: parameters (mandatory, just one occurrence) where parameters
is a list of expressions delimited by semicolon (;) in the form param_name,
lower_bound, upper_bound.

• CONSTS: constants (optional, just one occurrence) where constants
is a list of named constants delimited by semicolon (;) in the form
constant_name, constant_value.

• EQ: equation (mandatory, one for each model variable) where equation
has the form variable_name = equation_expression (syntax of the
equation_expression is defined later in this section).

• THRES: thresholds (mandatory, one for each model variable) where
thresholds has the form variable_name: threshold_values and
threshold_values is a list of at least two numeric_values delimited
by comma (,).

• VAR_POINTS: var_points (optional, just one occurrence) where var_points
is a list delimited by semicolons (;) of the form variable_name:
valuation_points, ramps_count. Here, valuation_points defines
the accuracy of the approximation and ramps_count defines the number
of additional created thresholds, effectively determining the accuracy
of the parameter synthesis process.

In the syntax above, the terms lower_bound, upper_bound, constant_value
and numeric_values are either integers or floating-point numbers (the sci-
entific notation is not supported), while the terms valuation_points and

10

ramps_count are integers only. Note that lines do not end with a semicolon
(;) or any other special ending character.

The syntax of equation_expression is defined as an arithmetic expres-
sion that uses only the operations + (addition), - (subtraction or unary
negation), and * (multiplication). The operands can be either numerical
values, variables, constants, parameters, or the application of one of the
following functions:

• [Hp|Hm](var, thr, a, b) is the so-called Heaviside step function
[KS09] in increasing/positive form (Hp) or in decreasing/negative form
(Hm); they are defined in the following way:

Hp =

a, (var < thr) ∧ (a < b)
b, (var < thr) ∧ (b < a)
b, (var ≥ thr) ∧ (a < b)
a, (var ≥ thr) ∧ (b < a)

Hm =

b, (var < thr) ∧ (a < b)
a, (var < thr) ∧ (b < a)
a, (var ≥ thr) ∧ (a < b)
b, (var ≥ thr) ∧ (b < a)

• [Rp|Rm](var, thr1, thr2, a, b) is the so-called Ramp function
in increasing/positive form (Rp) or in decreasing/negative form (Rm)
defined in the following way:

Rp =

a, (var < thr1) ∧ (a < b)
b, (var < thr1) ∧ (b < a)
a + (b− a) · var−thr1

thr2−thr1 , (thr1 ≤ var ≤ thr2) ∧ (a < b)
b + (a− b) · var−thr1

thr2−thr1 , (thr1 ≤ var ≤ thr2) ∧ (b < a)
b, (var > thr2) ∧ (a < b)
a, (var > thr2) ∧ (b < a)

Rm =

b, (var < thr1) ∧ (a < b)
a, (var < thr1) ∧ (b < a)
a− (a− b) · var−thr1

thr2−thr1 , (thr1 ≤ var ≤ thr2) ∧ (b < a)
b− (b− a) · var−thr1

thr2−thr1 , (thr1 ≤ var ≤ thr2) ∧ (a < b)
a, (var > thr2) ∧ (a < b)
b, (var > thr2) ∧ (b < a)

11

• [Sm|Sp](var, k, thr, a, b) is the so-called sigmoidal function [GBF+11]
in increasing/positive form (Sp) or in decreasing/negative mode (Sm);
they are defined in the following way:

Sp =
{
a + (b− a) · 1+tanh(k·(var−thr))

2 , a < b

b + (a− b) · 1+tanh(k·(var−thr))
2 , b < a

Sm =
{
a− (a− b) · 1+tanh(k(var−thr))

2 , b < a

b− (b− a) · 1+tanh(k(var−thr))
2 , a < b

• [Hillp|Hillm](var, thr, n, a, b) is the so-called Hill function
[KS09] in positive form (Hillp) or in negative form (Hillm); they are
defined in the following way:

Hillp =
{
a + (b−a)·varn

varn+thrn , a < b

b + (a−b)·varn

varn+thrn , b < a

Hillm =
{
a− (a−b)·thrn

varn+thrn , b < a

b− (b−a)·thrn

varn+thrn , a < b

According to the usual notation, the parameters: var, thr have the
meaning of the parameters [S], KM, respectively. Moreover, if a equals
0 then b acts as Vmax and vice-versa.

• Pow(var, n) is the well-known power function defined in the following
way:

Pow = varn

• Monod(var, thr, y) is the most common function for the description
of the microbial growth kinetics called Monod equation where var
usually stands for the substrate concentration; and is defined as follows:

Monod = var
y · (var + thr)

When the function is used to model an increase of microbial population
based on the substrate concentration the y (i.e., the yield coefficient)
equals 1. Otherwise, it is used to model a decrease of the substrate
proportional to the population growth.

• Moser(var, thr, n) is another function for modelling of microbial
growth defined as follows:

Moser = varn

varn + thr

12

• Tessier(var, thr) is another microbial growth function defined in
the following way:

Tessier = 1− exp
(
−var
thr

)

• Haldane(var, thr, k) is a microbial growth function defined as fol-
lows:

Haldane = var

var + thr + var2

k

• Aiba(var, thr, k) is a microbial growth function defined as follows:

Aiba =
var · exp(−var

k)
var + thr

• Tessier_type(var, thr, k) is a microbial growth function defined
as follows:

Tessier_type = exp
(
−var

k

)
− exp

(
−var
thr

)

• Andrews(var, thr, k) is a microbial growth function defined as fol-
lows:

Andrews = 1
(1 + thr

var) · (1 + var
k)

where var is a member of variables list; thr is meant to be an important
value of interest for the particular variable var and must be represented as
a valid numeric value from thresholds list of the particular variable var;
all other coefficients (e.g., k, a, etc.) are either numeric values or one of the
names defined in the constants list.

Example

VARS: x, y
CONSTS: k2, 1; deg_y, 0.1; a, 1; b, 0; n, 5
PARAMS: k1, 0, 2; deg_x, 0, 1
EQ: x = k1*Hillm(y, 5, n, a, b) - deg_x*x
EQ: y = k2*Hillm(x, 5, 5, 1, 0) - deg_y*y
VAR_POINTS: x: 1500, 10; y: 1500, 10
THRES: x: 0, 15
THRES: y: 0, 15

13

3.3 Properties Syntax
This section describes the syntax of the property file (the .ctl format). The
first subsection describes the usage of the standard Computational Tree
Logic (CTL) [CGP99]. The second subsection then describes the usage of
HUCTLP [BBD+16b], the logic that extends CTL with event predicates,
hybrid operators and past. The event predicates extension allows to reason
about directions of the flow in the model and the hybrid extension allows
the use of state variables that can be fixed in certain parts of the formula as
well as quantified.

3.3.1 CTL

Each .ctl file contains one or more assignment statements. The statements
are separated by new lines or semicolons (;). Comments can be written
using C-style (//) or Python-style (#). Note that multi-line formulae are not
supported, but you can use references to create more complicated constructs.
The assignment statement has one of the forms:

• identifier = formula

• identifier = expression

where identifier is a sequence of alphanumeric characters starting with
an alphabetic character. The term formula can be given as:

• an identifier (reference to formula defined elsewhere);

• a boolean constant: True, False (alternatively tt, ff);

• a float proposition: two expressions compared using one of the operators
<, >;

• a direction proposition: id:direction facet where id is the name
of a model variable (see Section 3.2), direction is either in or out and
facet can be positive (symbol +) or negative (symbol -) in the meaning
of upper or lower bound of states (e.g., var:in+);

• another formula in parentheses;

• a formula with a unary operator applied; the unary operators are !
(negation), EX, AX, EF, AF, EG, AG;

14

• two formulae with a binary operator applied in infix notation f1 op
f2, where op stands for one of && (conjunction), || (disjunction), ->
(implication), <-> (equivalence), EU, AU.

The term expression can be given as:

• identifier: a reference to an expression defined elsewhere or amodel
variable (Note that identifiers that can’t be resolved are considered as
variables and produce no error or warning.);

• a numeric constant (integer or floating-point; scientific notation not
supported);

• expression in parentheses.

Finally, a special flag :? in front of a formula assignment indicates
formulae that are going to be investigated by the parameter synthesis process.

Operator priority In general, unary operators have higher priority than
binary operators. Binary operators have the following priority:

&& � || � -> � <-> � EU � AU
Also note that ->, EU and AU are right associative, so that a EU b EU c is
parsed as a EU (b EU c).

Examples

• p1 = val > 3.14

• f = (AG ((2.1 < Var1) EU Var2 > 1.1)) || (EG (p1 AU b))

• :? p2 = val2 < -44

• p2 = var:in+ && var:in-

• :? a = EF (p1 && p2)

• b = AF foo

3.3.2 HUCTLP

This subsection defines the extensions of syntax in Section 3.3.1, i.e. every-
thing defined in Section 3.3.1 also applies for HUCTLP. The assignment
statement has one new form:

• identifier = direction_formula

15

where direction_formula stands for:

• an identifier (reference to a direction_formula defined elsewhere);

• a boolean constant: True, False (alternatively tt, ff);

• a loop atomic proposition: loop or Loop;

• another direction_formula in parentheses;

• a direction proposition: id direction where id is the name of a model
variable (see Section 3.2) and direction can be positive (symbol +) or
negative (symbol -) in the meaning of the increase or decrease of the
model variable value (e.g., var-);

• a direction_formula with the unary operator ! (for negation) ap-
plied;

• two direction_formulae with a binary operator applied in infix no-
tation f1 op f2, where op stands for one of && (conjunction), ||
(disjunction), -> (implication), <-> (equivalence).

The assignment statement for formula is extended by the following expres-
sions:

• a formula with a unary temporal operator:
modifier quantifier op formula
where modifier is optional and stands for { direction_formula },
quantifier is either future (A or E) or past (pA or pE) and op stands
for one of X, F, G, or the new operators wF (weak Future) and wX (weak
neXt), e.g., {var+ && !var-} pAX f1, EwF f2;

• two formulae with a binary temporal operator in infix notation:
f1 modifier1 quantifier op modifier2 f2
modifier1 and modifier2 are both optional and stand for { direction_formula
}, quantifier is either future (A or E) or past (pA or pE) and op stands
for U, e.g., f1 {var+} AU {!var+} f2;

• a formula with hybrid first-order quantifiers:
quantifier id bound: f1
where quantifier stands for forall or exists, id is a fresh hybrid
variable name, bound (optional) stands for in f2 and f1 and f2 are
defined as formula,
e.g., exists s in (EF AG Var > 5.3): !{Var-} EF s;

16

• a formula with hybrid operators: op id : formula
where op stands for at or bind, id is a hybrid variable name (fresh in
case of bind, previously bound in case of at), e.g., bind x : AG EF x.

For more information about semantics of new operators, quantifiers etc.
look into [BBD+16b].

Examples
• :? sink = bind x : AX x

• limit_cycle = bind s : EX EF x

• saddle = {var1+ || var1-} AX tt && {var1+} EX tt && {var1-} EX tt
&& {var2+ || var2-} pAX tt && {var2+} pEX tt && {var2-} pEX tt

• stable = bind x : AG EF x
:? bistable = exists s in stable : exists t in stable :

{!E2F1+} EF s && {!E2F1-} EF t && at t : !EF s

3.4 Results Output Format
There are currently two result output formats. A human-readable text
format (suitable for smaller models) and a JSON format for further machine
processing. Both formats contain the list of satisfying states of the abstracted
model together with the particular satisfying parameter valuations for all
formulae of interest.

3.4.1 Text Format

The text format represents all states of the abstraction satisfying the given
formula (which name is on separate line before list of satisfying states). Each
state is associated with satisfying parameterisations. The form of results
differs for models with independent parameters and models with dependent
parameters.

In the case of independent parameters, the syntax of every line of the
output is the following:

State(state_id)[xb
1, xu

1], ..., [xb
n, xu

n] -> Params([[pb
1, pu

1, ..., pb
m, pu

m]])

where

• state_id is the unique ID of the discrete state,

• x1, ..., xn are the model variables,

17

• xb
i, xu

i denote the upper and the lower threshold of the state,

• p1, ..., pm are the uncertain parameters,

• pb
i, pu

i denote the upper and the lower bound of the satisfying interval
of valuations for parameter pi, respectively.

In the case of dependent parameters, the syntax of every line of the
output is the following:

State(state_id)[xb
1, xu

1], ..., [xb
n, xu

n] -> Params({null:Formula})

where Formula is the exact output from SMT solver in SMT-LIB 2.0 format
[BST+10] mathematically expressing satisfying parameterisations.

Note that by default, additional log info and results are both printed to
standard output, but you can use command line arguments to redirect the
results into a separate file (see Section 4.2 for pithya and Section 4.3 for
pithyaComponents).

3.4.2 JSON Format

This subsection defines output format for parameter synthesis procedure
suitable for GUI (see Chapter 5). Let’s call the whole content ParamSet list
which has the form:
{

”variables”:[String], - the array of variables names (e.g., [”x”,”y”])

”thresholds”:[[Double]], - the array where each element is another
array of threshold values for some variable (inner arrays follow the
ordering of variable names) (e.g., [[0,1.2,5],[0,1,2,3]])

”parameters”:[String], - the array of parameter names (e.g., [”a”,”b”])

”parameter_bounds”:[Pair], - the array of pairs of bounding values
for particular parameter (e.g., [[0,1],[0,10]])

”states”:[State], - the array of all states of the abstracted model
where State equals {”id”:Int,”bounds”:[Pair]} with Int standing
for integer and [Pair] standing for the array of pairs of bounding
thresholds for particular state in particular dimension/variable (pairs
are ordered as variables)
(e.g., [{”id”:0,”bounds”:[[0,1.2],[0,1]]},
{”id”:1,”bounds”:[[0,1.2],[1,2]]}])

18

”type”:Enum, - where Enum is either ”rectangular” (if the model
contains just linearly-independent parameters) or ”smt” (if not) (on
this value depends the format of next list element)

”parameter_values”:[[[Pair]]], - if Enum is ”rectangular”; the
array of all unique parameterisations: [[Pair]] - where each parame-
terisation is the union of P-dimensional rectangles: [Pair] (where P
is number of parameters) - and each rectangle is defined by the array
of pairs of bounding values in particular dimension/parameter (pairs
are ordered as parameters)
(e.g., [[[[0,0.2],[0,1]],[[0,0.1],[0,2]]],[[[0.1,0.3],[2,5]]]])

”parameter_values”:[Formulae], - if Enum is ”smt”; the array of all
unique parameterisations where Formulae stands for
{”smtlib2Formula”:String,”Rexpression”:String} - where the first
String is the exact output of SMT solver in SMT-LIB 2.0 format
[BST+10] mathematically expressing satisfying parameterisations in
the form of character string and the second String contains the same
data but formated for GUI needs also in the form of a character string.

”results”:[Result] - the array of all combinations of property, sat-
isfying state and particular parameterisation where Result stands
for {”formula”:String,”data”:[IntPair]} - where String is the
identifier of a property from Section 3.3 and ”data” contains the
array of pairs of integers where the first value in particular pair is
an index into ”states” array and the second value is an index into
”parameter_values". (This type of representation was chosen to limit
the amount of redundant parameter values.)

}

19

Chapter 4

Command Line Interface

4.1 Run
CLI has one binary for the parameter synthesis, located bin/pithya; and
one for the attractor analysis, located bin/pithyaComponents. The bin
folder also contains other executables, however, these are either experimental
or used directly only when pithya operates together with GUI (Chapter 5),
so you don’t need to worry about them (for more information about each
see Section 3.1).

4.2 Arguments of pithya executable

4.2.1 Input and Output

• [-m,--model] filePath (required)
Path to the .bio file from which the model should be loaded. Detailed
description of the .bio format can be found in Section 3.2.

• [-p,--property] filePath (required)
Path to the .ctl file from which verified properties are loaded. Detailed
description of the .ctl format can be found in Section 3.3.

• [-ro,--result-output] [stdout, stderr, filePath, null] (de-
fault: stdout)
File or stream to which verification results should be printed. You can
use this option to print log and results separately. Note: errors are
always printed to stderr.

20

• [-r,--result] [human, json] (default: human)
Output format that is used when printing results.

human Text output in the form described in Section 3.4.1.
json An output format that can be easily parsed by other tools.

Description in Section 3.4.2.

• [-lo,--log-output] [stdout, stderr, filePath, null] (default:
stdout)
File or stream to which logging info should be printed. You can use
this option to print log and results separately. Note: errors are always
printed to stderr.

• [-l,--log] [none, info, verbose, debug] (default: verbose)
Amount of log data to print during execution.

none No logging.
info Print coarse verification progress and statistics (started opera-

tors, final solver throughput).
verbose Print interactive progress with dynamic throughput statistics

(roughly every 2s).
debug Print everything.

4.2.2 Verification Options

• --parallelism integer (default: runtime.avaialableProcessors)
The maximum number of threads that are used for parallel computation
(this is an upper bound, for some specific models or properties, desired
level of parallelism might not be achievable).

• --z3-path filePath (default: z3)
Relative or absolute path to the z3 command line executable.

• --disable-self-loops (optional)
If present in command, this switch disables generating of selfloops.
Creating selfloops can cause significant overhead even though they have
no impact on some types of properties (mainly reachability).

• --fast-approximation (optional)
If present in command, this switch enables much faster, but not neces-
sarily optimal version of the PMA approximation when evaluating the
model ODEs.

21

• --cut-to-range (optional)
If present in command, this switch disables generating of new thresholds
below or above the original variable ranges when computing the PMA
approximation.

4.3 Arguments of pithyaComponents executable

4.3.1 Input and Output

• [-m,--model] filePath (required)
Path to the .bio file from which the model should be loaded. Detailed
description of the .bio format can be found in Section 3.2.

• [-ro,--result-output] [stdout, stderr, filePath, null] (de-
fault: stdout)
File or stream to which analysis results should be printed. You can use
this option to print log and results separately. Note: errors are always
printed to stderr.

• [-lo,--log-output] [stdout, stderr, filePath, null] (default:
stdout)
File or stream to which logging info should be printed. You can use
this option to print log and results separately. Note: errors are always
printed to stderr.

none No logging.
info Print coarse verification progress and statistics (started opera-

tors, final solver throughput).
verbose Print interactive progress with dynamic throughput statistics

(roughly every 2s).
debug Print everything.

4.3.2 Other Options

• --parallelism integer (default: runtime.avaialableProcessors)
The maximum number of threads that are used for parallel computation
(this is an upper bound, for some specific models, desired level of
parallelism might not be achievable).

• --algorithm-type [local, dist] (default: local)
Specify the type of parallelism employed in analysis. Local algorithm

22

performs reachability operations sequentially, but forks a new thread
for each independent recursive call. On the other hand, dist algorithm
does not fork during recursion, but instead performs parallel reachable
analysis.

• --disable-heuristic (optional)
If present in command, this switch disables the heuristic for initial
state selection based on cardinality of its parameter set.

• --disable-self-loops (optional)
If present in command, this switch disables generating of selfloops.
Creating selfloops can cause significant overhead even though they have
no impact on some types of properties (mainly reachability).

• --fast-approximation (optional)
If present in command, this switch enables much faster, but not neces-
sarily optimal version of the PMA approximation when evaluating the
model ODEs.

• --cut-to-range (optional)
If present in command, this switch disables generating of new thresholds
below or above the original variable ranges when computing the PMA
approximation.

4.4 Example of Use
• ./bin/pithya --model model.bio --property property.ctl -r json
--log-output stderr > result.json 2> log.txt

• ./bin/pithya -m model.bio -p property.ctl -r human -lo stdout
--parallelism 4 --fast-approximation > complete-output.txt

• ./bin/pithyaComponents -m model.bio -r json -lo output.log
--algorithm-type dist --disable-heuristic > result.json

23

Chapter 5

Graphical User Interface

5.1 GUI in General
GUI of Pithya consists of 3 main parts: Editor, Explorer and Results.
Each part has its own tab in the panel below the tool’s name with its
description. Each tab has its specific purpose described in a respective
section of this chapter. On the very right, above the tab panel, there is
an Advanced Settings checkbox which affects many controllers across the
whole tool. In this manual such controllers are marked as (only in advanced
mode) (see following sections). By default, advanced settings checkbox is
switched off.

5.2 Editor
This is the first tab and also the place where you should usually start.
Here, model and properties are specified (or loaded) and the process of their
exploration is initiated. Area is visually divided into two horizontal parts.

5.2.1 Control Panel

This part is vertically divided into three panels:

1. Model Editor Control Panel

• Browse... A file loader button. It is responsible for loading
models in .bio format. When used, below it appears an uploading
progress bar and next to it the name of the loaded file. In this

24

way you can load any .bio file into the editor. For .bio syntax,
see Section 3.2.
• Reload Model button: allows to reset all changes done in the
model since it’s been loaded.
• Save Model button: saves current content of the Model Editor
(below) as a .bio file.
• Generate Approximation button: is the starting point for ex-

ploration of the model (see Section 5.3). After verifying the model
syntax (see Section 3.2), it starts the PMA approximation. The
button is disabled if currently loaded approximation corresponds
to the model in the Model Editor.
• Cut Thresholds checkbox (only in advanced mode): if checked,
thresholds computed by PMA approximation are restricted by
the minimal/maximal thresholds explicitly defined in the model.
This option can be used to reduce the state space when the non-
linear functions (such as the Hill function) in the model extend
far beyond the original variable range.
• Fast Approximation checkbox (only in advanced mode): en-

ables much faster but less precise version of PMA approximation.

2. Properties Editor Control Panel

• Browse... A file loader button. It is responsible for loading of
prepared or saved properties in .ctl format. When used, below
it appears an uploading progress bar and next to it the name of
the loaded file. In this way, you can load any .ctl file into the
editor. For .ctl syntax, see Section 3.3.
• Reload Properties button: allows to reset all changes done in
the properties since they’ve been loaded.
• Save Properties button: saves current content of Properties

Editor (below) as .ctl file.

3. Analyses Control Panel

• Run Parameter Synthesis button: starts the parameter syn-
thesis process and also checks the syntax of given properties (see
Section 3.3) with respect to the used model. The progress of
the synthesis process is presented in form of a notification. The

25

button is disabled if the currently loaded results correspond to
the currently approximated model and loaded properties. In case
there are some thresholds in the properties that are missing in
the model, the process stops and a dialog box appears with no-
tification that lets you decide whether the missing threshold(s)
should be added into the model and PMA approximation should
be regenerated before parameter synthesis could start again. An
outcome of this process has form of results (see Section 5.4).
• Number of Threads slider (only in advanced mode): defines
number of threads to use for the parameter synthesis and the
attractor analysis. By default, it is set to the maximum number
of available processors.
• Disable Self-Loops checkbox (only in advanced mode): disables
generating of selfloops as this process can cause significant over-
head even though they have no impact on some types of properties
(e.g., reachability).
• Run Attractor Analysis button: starts the attractor analysis
process. The progress of the process is presented in form of a
notification. The button is disabled if the currently loaded results
correspond to the currently approximated model. An outcome of
this process has form of results (see Section 5.4).
• Algorithm Type radio-button (only in advanced mode): spec-
ifies the type of parallelism employed for the attractor analysis
only.
• Disable Heuristic checkbox (only in advanced mode): disables
the heuristic for initial state selection based on cardinality of its
parameter set (attractor analysis only).

5.2.2 Editor Panel

It is vertically divided into two similar sub-areas:

1. first one is the text editor for model description (.bio file) — labelled
Model Editor. Changes in the content of the editor can be reverted
(in terms of undo) by the shortcut ctrl+z and applied back (in terms of
redo) by the shortcut ctrl+shift+z or ctrl+y (depending on your OS).
For more information about correct syntax of model see Section 3.2.

2. second one is the text editor for properties (.ctl file) — labelled
Properties Editor. Changes in the content of the editor can be

26

reverted (in terms of undo) by the shortcut ctrl+z and applied back
(in terms of redo) by the shortcut ctrl+shift+z or ctrl+y (depending
on your OS). For more information about correct syntax of properties
see Section 3.3.

5.3 Explorer
It is the second tab in the top panel and usually also the second one to use,
i.e., to explore the model and its dynamics before or during an analysis run.

You can setup several rows of plots with particular controllers — each
containing one 2D vector field (cut of phase space) and one corresponding
abstraction (i.e., 2D layer of transition-state space). In both cases on the
axes of all plots, there are model variables defined in model. If the model
contains just one variable the showing plots are considered to be 1D with
only one axis displayed (for which the variable name is selected) and the
second one empty (for which the constant (none) is selected). Each of the
plots can be downloaded by clicking right mouse button inside the plot.

Explorer area is visually divided into two horizontal parts.

5.3.1 Control Panel

It contains controllers for setting of visual output of all plots in Explorer tab.
It is vertically divided into 4 columns:

1. First column

• Arrows Count slider: sets the number of arrows (per dimension)
inside vector field(s).
• Colouring Threshold slider: sets the maximal magnitude of
vector in vector field(s) to be considered as neutral (in black). Any
vector with value above this magnitude is considered as positive
(in green) and any vector with value below negative value of this
magnitude is considered as negative (in red).
• Colouring Orientation radio-button: sets the vector field arrow
component(s) to which colouring is applied. Horizontal, vertical,
both (simple addition of both) or none (all vector arrows are
black).

2. Second column

27

• Arrows Length numeric input: sets the scaling factor for length
of arrows in vector field(s).
• Arrows Width slider: sets the scaling factor for width of arrows

in vector field(s) and the arrows representing transitions in discrete
state space(s).

3. Third column

• Trajectory Points Number numeric input (only in advanced
mode): sets the number of steps from the starting point (see
click-inside-plot settings in Section 5.3.2) simulating vector field
trajectory. Increase to prolong the trajectory. Default is 500.
• Trajectory Points Scaling Factor slider (only in advanced
mode): sets accuracy (or precision) of vector field trajectory.
Actually, it is scaling factor for computation of steps in phase
space trajectory. Hence, the smaller is the factor the more accurate
is the trajectory. Default is 1.

4. Fourth column

• at first, it looks empty and needs approximation to be correctly
done. After that, some controller(s) for setting up precise value
of each parameter appear(s) (according to number of parameters
defined in model) - labelled Parameter XYZ. This control of pa-
rameters gives you the opportunity to explore the same behaviour
of the model from various points of view with your naked eye.

5.3.2 Plot Area

Before the approximation is finished, there is just one button - Add Plot -
which is disabled until approximation is done correctly. Then, the very first
set of plots (one row) with particular controllers is spawned automatically
right after the approximation finishes.

Basically, it is an area showing several similar rows of plots with their
personal controllers and you can set each row separately (except the parame-
ters) but the possibilities of controllers are the same for each row in general.
Therefore, we describe just one row. Right after Add Plot button is clicked
new row appears below the others. Each row contains visually separated
area for setting up at the top of the row and below it there is the visual area.
Setting area consists of:

28

• Horizontal Axis selector: sets variable for horizontal axis of particular
pair of plots. Defaultly, it is filled with first variable according to the
model description in model editor (see Section 5.2.2).

• Vertical Axis selector: sets variable for vertical axis of particular pair
of plots. Defaultly, it is filled with second variable according to the
model description in model editor (see Section 5.2.2). If this is not
possible (model has just one variable) the constant (none) is selected
for this axis and plots are displayed in 1D mode.

• Delete button: deletes particular pair of plots with all of their settings.

• Hide checkbox: temporary hides particular pair of plots with their
controllers. They can be shown at your command by unchecking this
checkbox.

Visual area contains pair of plots (left-hand with vector field and right-hand
with transition-state space) with their personal controllers. Explicitly:

1. First column (controllers for manipulation with vector field of the
model). For more information about click-inside-plot settings see
description of vector field area (Second column)

• Apply to All VF button: applies click-inside-plot settings to all
shown vector field plots.
• Apply to TSS button: applies click-inside-plot settings to its
corresponding state space plot.
• Unselect button: deletes click-inside-plot settings of this plot.
• Unzoom button: sets axes of particular plot to the default ranges.
• Use PMA Model checkbox (only in advanced mode): switches a

model used for computing of vector fields plot. Defaultly, it is used
a model before PMA approximation but it might be interesting
to compare the differencies before and after PMA approximation
which is necessary for computing of state space.
• set of scale sliders labelled Continuous Value of XYZ: one for

each variable not shown in particular plot so you could investigate
each corner of vector field. Each slider is in range of minimal
and maximal thresholds after PMA approximation. If there is no
unshown variable, there is also no scale slider.

29

• text field: shows each variable on separate line with particular
value you are looking at in the plot. For variables used in axes,
coordinates are shown right after you move mouse inside this plot.

2. Second column (vector field area labelled ODE Model Vector Field
or PMA Model Vector Field)
it contains a plot of vector field which is a cut of phase space of the
model. This plot is shown for variables selected in particular selectors.
Click left mouse button in plot and drag over to zoom in selected area.
For zooming out use unzoom button. By double-clicking inside the
plot (without moving your mouse) you select specific starting point
from which a phase space trajectory is projected (this point is set as
click-inside-plot settings of this plot). Note, that such trajectory is
projection across all dimensions of the phase space and its length and
precision can be set by Trajectory Points Number and Trajectory
Points Scaling Factor controllers (only in advanced mode).

3. Third column (transition-state space area labelled Transition-State
Space)
it contains a plot of state space of the model with transitions (selfloops
are displayed as black bold points). This plot is shown for variables
selected in particular selectors. Click left mouse button in plot and drag
over to zoom in selected area. For zooming out use unzoom button.
By double-clicking inside the plot (without moving your mouse) you
select specific starting state from which all reachable states in this cut
are highlighted (this state is set as click-inside-plot settings of this plot).
Note, that displayed reachable area is usually not complete if model
contains more than two variables.

4. Fourth column (controllers for manipulation with transition-state space
plot). For more information about click-inside-plot settings see descrip-
tion of transition state space area (Third column)

• Apply to All TSS button: applies click-inside-plot settings to
all shown state space plots.
• Unselect button: deletes click-inside-plot settings of this plot.
• Unzoom button: sets axes of particular plot to the default ranges.
• set of discrete scale sliders labelled Discrete Value of XYZ:
one for each variable not shown in particular plot so you could

30

investigate each state of state space. Each slider is in range of
all layers each defined by some adjacent pair of thresholds from
PMA approximation. If there is no unshown variable, there is
also no scale slider.
• text field: shows each variable on separate line with particular

range of values (bounding particular state you are pointing at in
the plot).

5.4 Results
It is the third tab in the top panel. It is used for exploration of parameter
space and satisfiable states. It is possible to load data for visualisation
from three different sources (import, the parameter synthesis, the attractor
analysis) but be aware that by selecting another source all displayed plots
will be lost.

You can setup several rows of plots with particular controllers — each
containing one parameter space plot (showing 2D projection of satisfying
parameterisations or the combination of one parameter and one variable to
explore mutual dependencies) besides one plot with 2D layer of satisfying
state space to capture all boundaries of initial conditions meeting particular
property. If the model contains just one parameter the showing parameter
space plots are considered to be combinations of one parameter and one of
the variables (by default, the first one from the list of names is selected).
Also, if the model contains just one variable the showing satisfying state
space plots are considered to be 1D with only one axis displayed (for which
the variable name is selected) and the second one empty (for which the
constant (none) is selected).

Each of these plots can be downloaded by clicking right mouse button in-
side them. Moreover, file with the results (in JSON format - see Section 3.4.2)
can be imported separately so you don’t have to run an analysis all over
again. So we encourage you to save results once they are ready.

Area is visually divided into two horizontal parts.

5.4.1 Result Control Panel

It contains controllers for setting of visual output of all plots. It consists of:

• Browse... button: is actually a file loader. It is responsible for import
of prepared or saved results (in JSON format). When used, below it

31

appears uploading progress bar and next to it the name of imported
file.

• Synthesis Results button: loads results of the parameter synthesis
process once they are ready for visualisation. You will be notified by
change of colour (grey colour means no data and the button disabled;
black colour means data are prepared to be loaded into plot area 5.4.2;
green colour means data were updated by new analysis run).

• Attractor Results button: loads results of the attractor analysis
once they are ready for visualisation. You will be notified by change
of colour (grey colour means no data and the button disabled; black
colour means data are prepared to be loaded into plot area 5.4.2; green
colour means data were updated by new analysis run).

• Imported Results button: loads imported results for visualisation.
You will be notified by change of colour (grey colour means no data
and the button disabled; black colour means data are prepared to be
loaded into plot area 5.4.2; green colour means data were updated by
new data file).

• Save Loaded Results button: calls file-download routine of your
browser with currently loaded results.

• Show Parameters Coverage checkbox: is a switch between two
modes of parameter space visualisation. Default mode (unchecked)
shows all satisfying parameterisations in one shade of green colour (so
they form various unicolour areas even though the parameterisations
might overlap) while other mode (checked) shows overlapping satisfying
parameterisations with different shades of green colour based on the
number of particular satisfying states so you can tell which part of
parameter space covers particular property the best. Problem is that
such visualisation is an approximation (homogeneous grid of rectangles)
and its accuracy depends on following Resolution slider. Be careful
with it’s setting as it could be computationally expensive.

• Colour Shade Degree slider (only for the previous checkbox on):
sets the magnitude of shade of overlapping parameterisations.

• Resolution slider (only for the previous checkbox on): sets the number
of rectangles on the grid’s edge which defines granularity of resulting
parameter space. The more of these rectangles harder will be the
computational process.

32

5.4.2 Plot Area

Before an analysis or import is finished, there is just one button (Add Plot,
which is disabled until some data results are loaded) and the text giving you
a hint to run an analysis or to import some results file.

Basically, it is an area showing several similar rows of plots with their
personal controllers and you can set each row separately but the possibilities
of controllers are the same for each row in general. Therefore, we describe
just one row. Right after Add Plot button is clicked new row appears below
the others. Each row contains visually separated area for setting up at the
top of the row and below it there is the visual area. Setting area consists of:

• Select Formula selector: sets property for which to display the results
in this row. It contains the list of all investigated properties. First one
is selected by default but you can choose whichever you want.

• Delete button: deletes particular pair of plots with all of their settings.

• Hide checkbox: temporary hides particular pair of plots. They can be
shown at your command by unchecking this checkbox.

• Show Grid checkbox (only in advanced mode): disables/enables grid
of thresholds shown inside satisfying state space and potentially in
parameter-variable combination plot (if selected).

Visual area contains pair of plots (one parameter space with satisfying
parameterisations and one state space with highlighted satisfying states)
with their personal controllers. Explicitly:

1. First column (controllers for manipulation with parameter space plot).
For more information about click-inside-plot settings see the description
of parameter space area (Second column)

• Clear Plot button: deletes click-inside-plot settings of this plot.
• Unzoom button: sets axes of particular plot to the default ranges.
• Horizontal Axis selector: sets a parameter or a variable for

horizontal axis of particular parameter space plot. Defaultly, it is
filled with the first parameter according to the model description
in the model editor (see Section 5.2.2).
• Vertical Axis selector: sets a parameter or a variable for vertical

axis of particular parameter space plot. Defaultly, it is filled with
the second parameter according to the model description in the

33

model editor (see Section 5.2.2). If this is not possible (the model
has just one parameter) the first variable is selected for this axis
according to model description and parameter space plot becomes
a parameter-variable combination plot. Note, that it is not allowed
in this kind of plot to select for both axes only variables.
• set of checkboxes (only in advanced mode): one for each variable
(implicitly turned off) and one for each parameter not shown in
particular plot (implicitly turned on). They control whether a
parameter or variable has shown scale slider or not. Turning slider
off means that whole range of its values is taking into account for
showing satisfying parameterisations.
• set of scale sliders labelled Value of XYZ: one for each parameter

not shown in particular plot so you could investigate each corner
of parameter space. Each slider is in the range of that particular
parameter according to model description in the model editor (see
Section 5.2.2). If there is no unshown parameter, there is also no
scale slider. In advanced mode, there is also scale slider for each
model variable (not shown on one of the axes) in the range of its
minimal and maximal thresholds after PMA approximation.
• text field: shows all parameters and variables on separate line
with particular value used for displaying particular plot. For
parameters, this might be either one particular value (with slider
on) or the range of values (with slider off) and for variables, it is
always the range of values either bounding one state (with slider
on) or the group of states (with slider off).

2. Second column (parameter space area labelled either Parameter
Space or Parameter-Variable Combination Plot)
contains either a plot of parameter space or a plot of parameter-variable
combination. The plot is shown either for parameters only or for the
combination of one parameter and one variable selected in particular
selectors. Click left mouse button in plot and drag over to zoom in
selected area. For zooming out use Unzoom button. By double-
clicking inside the plot (without moving your mouse) you select a point
(in normal plot) or a line (in combination plot). If this point/line crosses
some satisfying parameterisations, in state space next to this plot there
will be highlighted (by blue borders) all satisfying states for which
particular formula holds in at least one selected parameterisations.
This point/line is set as click-inside-plot settings of this plot. Note,

34

that some satisfying state can be shown only if selected point/line
crosses some shown satisfying parameterisation.

3. Third column (satisfying state space area labelled Satisfying State
Space)
contains a plot of state space of the model with highlighted (with green
background) satisfying states. This plot is shown for variables selected
in particular selectors. Click left mouse button in plot and drag over
to zoom in selected area. For zooming out use Unzoom button. By
double-clicking inside the plot (without moving your mouse) you select
specific state for which only corresponding satisfying parameterisations
in parameter space plot will be shown. Such state turns into dark green.
It is possible to select more than one state in this way. To deselect
just one state repeat double-clicking on it, to deselect all states use
Clear Plot button. These states are set as click-inside-plot settings
of this plot. Note, that if no state is selected (by default) satisfying
parameterisations for all states are shown in the particular parameter
space plot.

4. Fourth column (controllers for manipulation with satisfying state space
plot). For more information about click-inside-plot settings see descrip-
tion of satisfying state space area (Third column)

• Clear Plot button: deletes click-inside-plot settings of this plot.
• Unzoom button: sets axes of particular plot to the default ranges.
• Horizontal Axis selector: sets variable for horizontal axis of this

plot only. Defaultly, it is filled with first variable according to the
model description in the model editor (see Section 5.2.2).
• Vertical Axis selector: sets variable for vertical axis of this plot
only. Defaultly, it is filled with second variable according to the
model description in the model editor (see Section 5.2.2). If this
is not possible (model has just one variable) the constant (none)
is selected for this axis and plots are displayed in 1D mode.
• set of scale sliders labelled Value of XYZ: one for each variable

not shown in particular plot so you could investigate each state of
state space. Each slider is in the range of minimal and maximal
thresholds of that particular variable after PMA approximation.
If there is no unshown variable, there is also no scale slider.

35

• text field: shows all variables on separate line with particular
range of values (bounding particular state you are pointing at in
the plot).

36

Bibliography

[BBB+17] Jiří Barnat, Nikola Beneš, Luboš Brim, Martin Demko, Matej
Hajnal, Samuel Pastva, and David Šafránek. Detecting attractors
in biological models with uncertain parameters. In CMSB 2017,
volume 10545 of LNBI. Springer, 2017.

[BBD+16a] Nikola Beneš, Luboš Brim, Martin Demko, Samuel Pastva, and
David Šafránek. Parallel SMT-based parameter synthesis with
application to piecewise multi-affine systems. In ATVA, volume
9936 of LNCS, pages 1–17. Springer, 2016.

[BBD+16b] Nikola Beneš, Luboš Brim, Martin Demko, Samuel Pastva, and
David Šafránek. A model checking approach to discrete bifurca-
tion analysis. In FM 2016, volume 9995 of LNCS, pages 85–101,
2016.

[Bra14] Tim Bray. The JavaScript object notation (JSON) data inter-
change format. RFC 7159, RFC Editor, March 2014.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib
standard: Version 2.0. In Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh, Eng-
land), volume 13, page 14, 2010.

[BYWB07] Grégory Batt, Boyan Yordanov, Ron Weiss, and Calin Belta. Ro-
bustness analysis and tuning of synthetic gene networks. Bioin-
formatics, 23(18):2415–2422, 2007.

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model
checking. MIT press, 1999.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An
efficient SMT solver. In TACAS’08, volume 4963 of LNCS, pages
337–340. Springer, 2008.

37

[GBF+11] Radu Grosu, Grégory Batt, Flavio H. Fenton, James Glimm,
Colas Le Guernic, Scott A. Smolka, and Ezio Bartocci. From
cardiac cells to genetic regulatory networks. In CAV’11, volume
6806 of LNCS, pages 396–411, 2011.

[KS09] James P Keener and James Sneyd. Mathematical physiology,
volume 1. Springer, 2009.

38

	Introduction
	Installation
	Download
	Dependencies
	Build
	Core and CLI
	GUI

	Common information
	Executables
	Model Syntax
	Properties Syntax
	CTL
	HUCTLP

	Results Output Format
	Text Format
	JSON Format

	Command Line Interface
	Run
	Arguments of pithya executable
	Input and Output
	Verification Options

	Arguments of pithyaComponents executable
	Input and Output
	Other Options

	Example of Use

	Graphical User Interface
	GUI in General
	Editor
	Control Panel
	Editor Panel

	Explorer
	Control Panel
	Plot Area

	Results
	Result Control Panel
	Plot Area

	Bibliography

