1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
use crate::*;
use fxhash::FxBuildHasher;
use std::cmp::{max, min};
/// Basic boolean logical operations for `Bdd`s:
/// $\neg, \land, \lor, \Rightarrow, \Leftrightarrow, \oplus$.
impl Bdd {
/// Create a `Bdd` corresponding to the $\neg \phi$ formula, where $\phi$ is this `Bdd`.
pub fn not(&self) -> Bdd {
if self.is_true() {
Bdd::mk_false(self.num_vars())
} else if self.is_false() {
Bdd::mk_true(self.num_vars())
} else {
// Note that this does not break DFS order of the graph because
// we are only flipping terminals, which already have special positions.
let mut result_vector = self.0.clone();
for node in result_vector.iter_mut().skip(2) {
// skip terminals
node.high_link.flip_if_terminal();
node.low_link.flip_if_terminal();
}
Bdd(result_vector)
}
}
/// Create a `Bdd` corresponding to the $\phi \land \psi$ formula, where $\phi$ and $\psi$
/// are the two given `Bdd`s.
pub fn and(&self, right: &Bdd) -> Bdd {
apply(self, right, op_function::and)
}
/// Create a `Bdd` corresponding to the $\phi \lor \psi$ formula, where $\phi$ and $\psi$
/// are the two given `Bdd`s.
pub fn or(&self, right: &Bdd) -> Bdd {
apply(self, right, op_function::or)
}
/// Create a `Bdd` corresponding to the $\phi \Rightarrow \psi$ formula, where $\phi$ and $\psi$
/// are the two given `Bdd`s.
pub fn imp(&self, right: &Bdd) -> Bdd {
apply(self, right, op_function::imp)
}
/// Create a `Bdd` corresponding to the $\phi \Leftrightarrow \psi$ formula, where $\phi$ and $\psi$
/// are the two given `Bdd`s.
pub fn iff(&self, right: &Bdd) -> Bdd {
apply(self, right, op_function::iff)
}
/// Create a `Bdd` corresponding to the $\phi \oplus \psi$ formula, where $\phi$ and $\psi$
/// are the two given `Bdd`s.
pub fn xor(&self, right: &Bdd) -> Bdd {
apply(self, right, op_function::xor)
}
/// Create a `Bdd` corresponding to the $\phi \land \neg \psi$ formula, where $\phi$ and $\psi$
/// are the two given `Bdd`s.
pub fn and_not(&self, right: &Bdd) -> Bdd {
apply(self, right, op_function::and_not)
}
/// Apply a general binary operation to two given `Bdd` objects.
///
/// The `op_function` specifies the actual logical operation that will be performed. See
/// `crate::op_function` module for examples.
///
/// In general, this function can be used to slightly speed up less common Boolean operations
/// or to fuse together several operations (like negation and binary operation).
pub fn binary_op<T>(left: &Bdd, right: &Bdd, op_function: T) -> Bdd
where
T: Fn(Option<bool>, Option<bool>) -> Option<bool>,
{
apply(left, right, op_function)
}
/// Apply a general binary operation together with up-to three Bdd variable flips. See also `binary_op`.
///
/// A flip exchanges the edges of all decision nodes with the specified variable `x`.
/// As a result, the set of bitvectors represented by this Bdd has the value of `x` negated.
///
/// With this operation, you can apply such flip to both input operands as well as the output
/// Bdd. This can greatly simplify implementation of state space generators for asynchronous
/// systems.
pub fn fused_binary_flip_op<T>(
left: (&Bdd, Option<BddVariable>),
right: (&Bdd, Option<BddVariable>),
flip_output: Option<BddVariable>,
op_function: T,
) -> Bdd
where
T: Fn(Option<bool>, Option<bool>) -> Option<bool>,
{
apply_with_flip(left.0, right.0, left.1, right.1, flip_output, op_function)
}
}
/// **(internal)** Shorthand for the more advanced apply which includes variable flipping
fn apply<T>(left: &Bdd, right: &Bdd, terminal_lookup: T) -> Bdd
where
T: Fn(Option<bool>, Option<bool>) -> Option<bool>,
{
apply_with_flip(left, right, None, None, None, terminal_lookup)
}
/// **(internal)** Universal function to implement standard logical operators.
///
/// The `terminal_lookup` function takes the two currently considered terminal BDD nodes (none
/// if the node is not terminal) and returns a boolean if these two nodes can be evaluated
/// by the function being implemented. For example, if one of the nodes is `false` and we are
/// implementing `and`, we can immediately evaluate to `false`.
///
/// Additionally, you can provide `flip_left_if`, `flip_right_if` and `flip_out_if` `BddVariables`
/// which will, given the corresponding node has the given decision variable, flip the low/high
/// link of the node. This is used to implement faster state-space generators for asynchronous
/// systems.
///
/// The reason why we allow this behaviour in apply, is that flipping the pointers in a BDD is cheap,
/// but breaks the DFS order, which may result in unexpected behaviour. Furthermore, since the
/// function is generic, in most performance intensive paths, it should be optimized anyway.
fn apply_with_flip<T>(
left: &Bdd,
right: &Bdd,
flip_left_if: Option<BddVariable>,
flip_right_if: Option<BddVariable>,
flip_out_if: Option<BddVariable>,
terminal_lookup: T,
) -> Bdd
where
T: Fn(Option<bool>, Option<bool>) -> Option<bool>,
{
let num_vars = left.num_vars();
if right.num_vars() != num_vars {
panic!(
"Var count mismatch: BDDs are not compatible. {} != {}",
num_vars,
right.num_vars()
);
}
check_flip_bounds(num_vars, flip_left_if);
check_flip_bounds(num_vars, flip_right_if);
check_flip_bounds(num_vars, flip_out_if);
// Result holds the new BDD we are computing. Initially, `0` and `1` nodes are present. We
// remember if the result is `false` or not (`is_not_empty`). If it is, we just provide
// a `false` BDD instead of the result. This is easier than explicitly adding `1` later.
let mut result: Bdd = Bdd::mk_true(num_vars);
let mut is_not_empty = false;
// Every node in `result` is inserted into `existing` - this ensures we have no duplicates.
let mut existing: HashMap<BddNode, BddPointer, FxBuildHasher> =
HashMap::with_capacity_and_hasher(max(left.size(), right.size()), FxBuildHasher::default());
existing.insert(BddNode::mk_zero(num_vars), BddPointer::zero());
existing.insert(BddNode::mk_one(num_vars), BddPointer::one());
// Task is a pair of pointers into the `left` and `right` BDDs.
#[derive(Eq, PartialEq, Hash, Copy, Clone)]
struct Task {
left: BddPointer,
right: BddPointer,
}
// `stack` is used to explore the two BDDs "side by side" in DFS-like manner. Each task
// on the stack is a pair of nodes that needs to be fully processed before we are finished.
let mut stack: Vec<Task> = Vec::with_capacity(max(left.size(), right.size()));
stack.push(Task {
left: left.root_pointer(),
right: right.root_pointer(),
});
// `finished` is a memoization cache of tasks which are already completed, since the same
// combination of nodes can be often explored multiple times.
let mut finished: HashMap<Task, BddPointer, FxBuildHasher> =
HashMap::with_capacity_and_hasher(max(left.size(), right.size()), FxBuildHasher::default());
while let Some(on_stack) = stack.last() {
if finished.contains_key(on_stack) {
stack.pop();
} else {
// skip finished tasks
let (l, r) = (on_stack.left, on_stack.right);
// Determine which variable we are conditioning on, moving from smallest to largest.
let (l_v, r_v) = (left.var_of(l), right.var_of(r));
let decision_var = min(l_v, r_v);
// If the variable is the same as in the left/right decision node,
// advance the exploration there. Otherwise, keep the pointers the same.
let (l_low, l_high) = if l_v != decision_var {
(l, l)
} else if Some(l_v) == flip_left_if {
(left.high_link_of(l), left.low_link_of(l))
} else {
(left.low_link_of(l), left.high_link_of(l))
};
let (r_low, r_high) = if r_v != decision_var {
(r, r)
} else if Some(r_v) == flip_right_if {
(right.high_link_of(r), right.low_link_of(r))
} else {
(right.low_link_of(r), right.high_link_of(r))
};
// Two tasks which correspond to the two recursive sub-problems we need to solve.
let comp_low = Task {
left: l_low,
right: r_low,
};
let comp_high = Task {
left: l_high,
right: r_high,
};
// Try to solve the tasks using terminal lookup table or from cache.
let new_low = terminal_lookup(l_low.as_bool(), r_low.as_bool())
.map(BddPointer::from_bool)
.or_else(|| finished.get(&comp_low).cloned());
let new_high = terminal_lookup(l_high.as_bool(), r_high.as_bool())
.map(BddPointer::from_bool)
.or_else(|| finished.get(&comp_high).cloned());
// If both values are computed, mark this task as resolved.
if let (Some(new_low), Some(new_high)) = (new_low, new_high) {
if new_low.is_one() || new_high.is_one() {
is_not_empty = true
}
if new_low == new_high {
// There is no decision, just skip this node and point to either child.
finished.insert(*on_stack, new_low);
} else {
// There is a decision here.
let node = if flip_out_if == Some(decision_var) {
BddNode::mk_node(decision_var, new_high, new_low)
} else {
BddNode::mk_node(decision_var, new_low, new_high)
};
if let Some(index) = existing.get(&node) {
// Node already exists, just make it a result of this computation.
finished.insert(*on_stack, *index);
} else {
// Node does not exist, it needs to be pushed to result.
result.push_node(node);
existing.insert(node, result.root_pointer());
finished.insert(*on_stack, result.root_pointer());
}
}
stack.pop(); // Mark as resolved.
} else {
// Otherwise, if either value is unknown, push it to the stack.
if flip_out_if == Some(decision_var) {
// If we are flipping output, we have to compute subtasks in the right order.
if new_high.is_none() {
stack.push(comp_high);
}
if new_low.is_none() {
stack.push(comp_low);
}
} else {
if new_low.is_none() {
stack.push(comp_low);
}
if new_high.is_none() {
stack.push(comp_high);
}
}
}
}
}
if is_not_empty {
result
} else {
Bdd::mk_false(num_vars)
}
}
/// **(internal)** A simple utility method for checking bounds of a flip variable.
fn check_flip_bounds(num_vars: u16, var: Option<BddVariable>) {
if let Some(BddVariable(var)) = var {
if var >= num_vars {
panic!(
"Cannot flip variable {} in Bdd with {} variables.",
var, num_vars
);
}
}
}