1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
use crate::bdd_params::BddParameterEncoder;
use crate::biodivine_std::structs::IdState;
use crate::{BooleanNetwork, FnUpdate, Monotonicity, Regulation, VariableId};
use biodivine_lib_bdd::{bdd, Bdd};
use std::ops::Range;
pub fn build_static_constraints(bn: &BooleanNetwork, encoder: &BddParameterEncoder) -> Bdd {
let mut condition = encoder.bdd_variables.mk_true();
let ctx = Ctx::new(bn, encoder);
for r in &bn.graph.regulations {
if let Some(fun) = bn.get_update_function(r.target) {
if r.monotonicity != None {
let monotonicity = build_monotonicity_explicit(&ctx, r, fun);
condition = bdd!(condition & monotonicity);
if condition.is_false() {
println!(
"Regulation {} -> {} is not monotonous.",
bn.graph.get_variable(r.regulator).name,
bn.graph.get_variable(r.target).name
);
break;
}
}
if r.observable {
let observability = build_observability_explicit(&ctx, r, fun);
condition = bdd!(condition & observability);
if condition.is_false() {
println!(
"Regulation {} -> {} is not observable.",
bn.graph.get_variable(r.regulator).name,
bn.graph.get_variable(r.target).name
);
break;
}
}
} else {
if r.monotonicity != None {
let monotonicity = build_monotonicity_implicit(&ctx, r);
condition = bdd!(condition & monotonicity);
if condition.is_false() {
println!(
"Regulation {} -> {} is not monotonous.",
bn.graph.get_variable(r.regulator).name,
bn.graph.get_variable(r.target).name
);
break;
}
}
if r.observable {
let observability = build_observability_implicit(&ctx, r);
condition = bdd!(condition & observability);
if condition.is_false() {
println!(
"Regulation {} -> {} is not observable.",
bn.graph.get_variable(r.regulator).name,
bn.graph.get_variable(r.target).name
);
break;
}
}
}
}
condition
}
struct Ctx<'a> {
bn: &'a BooleanNetwork,
encoder: &'a BddParameterEncoder,
}
impl<'a> Ctx<'a> {
pub fn new(bn: &'a BooleanNetwork, encoder: &'a BddParameterEncoder) -> Ctx<'a> {
Ctx { bn, encoder }
}
pub fn pair_explicit(&self, states: (IdState, IdState), fun: &'a FnUpdate) -> (Bdd, Bdd) {
let (inactive, active) = states;
let inactive = fun._symbolic_eval(inactive, self.encoder);
let active = fun._symbolic_eval(active, self.encoder);
(inactive, active)
}
pub fn pair_implicit(&self, states: (IdState, IdState), variable: VariableId) -> (Bdd, Bdd) {
let (inactive, active) = states;
let inactive = self.encoder.get_implicit(inactive, variable);
let active = self.encoder.get_implicit(active, variable);
let inactive = self.encoder.bdd_variables.mk_var(inactive);
let active = self.encoder.bdd_variables.mk_var(active);
(inactive, active)
}
}
fn build_monotonicity_implicit<'a>(ctx: &Ctx<'a>, regulation: &'a Regulation) -> Bdd {
let mut condition = ctx.encoder.bdd_variables.mk_true();
for states in InputStatesPairIterator::new(ctx.bn, regulation) {
let (inactive, active) = ctx.pair_implicit(states, regulation.target);
let monotonous =
build_monotonicity_pair(&inactive, &active, regulation.monotonicity.unwrap());
condition = bdd!(condition & monotonous);
}
condition
}
fn build_observability_implicit<'a>(ctx: &Ctx<'a>, regulation: &'a Regulation) -> Bdd {
let mut condition = ctx.encoder.bdd_variables.mk_false();
for states in InputStatesPairIterator::new(ctx.bn, regulation) {
let (inactive, active) = ctx.pair_implicit(states, regulation.target);
condition = bdd!(condition | (!(inactive <=> active)));
}
condition
}
fn build_monotonicity_explicit<'a>(
ctx: &Ctx<'a>,
regulation: &'a Regulation,
update_function: &'a FnUpdate,
) -> Bdd {
let mut condition = ctx.encoder.bdd_variables.mk_true();
for states in InputStatesPairIterator::new(ctx.bn, regulation) {
let (inactive, active) = ctx.pair_explicit(states, update_function);
let monotonous =
build_monotonicity_pair(&inactive, &active, regulation.monotonicity.unwrap());
condition = bdd!(condition & monotonous);
}
condition
}
fn build_observability_explicit<'a>(
ctx: &Ctx<'a>,
regulation: &'a Regulation,
update_function: &'a FnUpdate,
) -> Bdd {
let mut condition = ctx.encoder.bdd_variables.mk_false();
for states in InputStatesPairIterator::new(ctx.bn, regulation) {
let (inactive, active) = ctx.pair_explicit(states, update_function);
condition = bdd!(condition | (!(inactive <=> active)));
}
condition
}
struct InputStatesPairIterator {
range: Range<usize>,
mask: usize,
regulators: Vec<VariableId>,
variable: VariableId,
}
impl Iterator for InputStatesPairIterator {
type Item = (IdState, IdState);
fn next(&mut self) -> Option<Self::Item> {
for next_index in &mut self.range {
if next_index & self.mask != 0 {
continue;
} else {
let state = extend_table_index_to_state(next_index, &self.regulators);
return Some((state, state.flip_bit(self.variable.0)));
}
}
None
}
}
impl InputStatesPairIterator {
pub fn new(bn: &BooleanNetwork, regulation: &Regulation) -> InputStatesPairIterator {
let regulators = bn.graph.regulators(regulation.target);
let regulator_index = regulators
.iter()
.position(|v| *v == regulation.regulator)
.unwrap();
let table_size = 1 << regulators.len();
let mask = 1 << regulator_index;
InputStatesPairIterator {
regulators,
variable: regulation.regulator,
mask,
range: (0..table_size),
}
}
}
fn extend_table_index_to_state(table_index: usize, args: &[VariableId]) -> IdState {
let mut state: usize = 0;
for (i, regulator) in args.iter().enumerate() {
if (table_index >> i) & 1 == 1 {
state |= 1 << regulator.0;
}
}
IdState::from(state)
}
fn build_monotonicity_pair(inactive: &Bdd, active: &Bdd, monotonicity: Monotonicity) -> Bdd {
match monotonicity {
Monotonicity::Activation => bdd!(inactive => active),
Monotonicity::Inhibition => bdd!(active => inactive),
}
}