1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
use crate::biodivine_std::traits::Set;
use crate::symbolic_async_graph::{GraphColoredVertices, SymbolicAsyncGraph};
use crate::VariableId;
use biodivine_lib_bdd::Bdd;

/// Basic symbolic graph operators. For convenience, there is a wide variety of different
/// operators fulfilling different needs. Here, all operators only analyse transitions with
/// respect to a single network variable and every operation implemented using one symbolic
/// operation.
///
/// The general recommendation is to use `var_post` / `var_pre` for most tasks
/// (implementing additional logic using extra symbolic operations), and once the algorithm is
/// tested and stable, replace these functions with the more efficient "fused" operations.
///
/// We provide the following variable-specific operations:
///  - `var_post` / `var_pre`: General successors or predecessors.
///  - `var_post_out` / `var_pre_out`: Successors or predecessors, but only *outside* of the
///     given initial set.
///  - `var_post_within` / `var_pre_within`: Successors or predecessors, but only *inside* the
///     given initial set.
///  - `var_can_post` / `var_can_pre`: Subset of the initial set that has some
///     successors / predecessors.
///  - `var_can_post_out` / `var_can_pre_out`: Subset of the initial set that can perform
///     a transition leading *outside* of the initial set.
///  - `var_can_post_within` / `var_can_pre_within`: Subset of the initial set that can perform
///     a transition leading *into* the initial set.
///
/// Note that the output of some of these functions is technically equivalent (e.g.
/// `var_post_within` and `var_can_pre_within`) but we nevertheless provided all for completeness.
///
impl SymbolicAsyncGraph {
    /// Compute the `GraphColoredVertices` representing the successors of the vertices in the
    /// given `initial` set that are reached by updating the given `variable`. Formally:
    ///
    /// $$
    ///    \texttt{VarPost}(v, X) = \\{~(y, c) \mid \exists x.~(x, c) \in X \land x \xrightarrow{v}_c y~\\}
    /// $$
    pub fn var_post(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // flip(initial & can_apply_function)
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_binary_flip_op(
            (&initial.bdd, None),
            (&self.update_functions[variable.0], None),
            Some(symbolic_var),
            biodivine_lib_bdd::op_function::and,
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the predecessors of the vertices in the
    /// given `initial` set that are reached by updating the given `variable`. Formally:
    ///
    /// $$
    ///    \texttt{VarPre}(v, X) = \\{~(x, c) \mid \exists y.~(y, c) \in X \land x \xrightarrow{v}_{c} y~\\}
    /// $$
    pub fn var_pre(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // flip(set) & can_apply_function
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_binary_flip_op(
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            None,
            biodivine_lib_bdd::op_function::and,
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the successors of the vertices in the
    /// given `initial` set that are reached by updating the given `variable`, but are *not* in
    /// the `initial` set. Formally:
    ///
    /// $$
    ///    \texttt{VarPostOut}(v, X) = \\{~(y, c) \mid (y, c) \notin X \land \exists x.~(x, c) \in X \land x \xrightarrow{v}_{c} y~\\}
    /// $$
    pub fn var_post_out(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // flip(set & !flip(set) & can_apply_function)
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            Some(symbolic_var),
            |a, b, c| {
                // a & !b & c
                match (a, b, c) {
                    (Some(false), _, _) => Some(false),
                    (_, Some(true), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(true), Some(false), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the predecessors of the vertices in the
    /// given `initial` set that are reached by updating the given `variable`, but are *not* in
    /// the initial set. Formally:
    ///
    /// $$
    ///    \texttt{VarPreOut}(v, X) = \\{~(x, c) \mid (x, c) \notin X \land \exists y.~(y, c) \in X \land x \xrightarrow{v}_{c} y~\\}
    /// $$
    pub fn var_pre_out(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // !set & flip(set) & can_apply_function
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            None,
            |a, b, c| {
                // !a & b & c
                match (a, b, c) {
                    (Some(true), _, _) => Some(false),
                    (_, Some(false), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(false), Some(true), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the successors of the vertices in the
    /// given `initial` set that are reached by updating the given `variable`, but are *within*
    /// the `initial` set. Formally:
    ///
    /// $$
    ///    \texttt{VarPostWithin}(v, X) = \\{~(y, c) \mid (y, c) \in X \land \exists x.~(x, c) \in X \land x \xrightarrow{v}_{c} y~\\}
    /// $$
    pub fn var_post_within(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // flip(set & flip(set) & can_apply_function)
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            Some(symbolic_var),
            |a, b, c| {
                // a & b & c
                match (a, b, c) {
                    (Some(false), _, _) => Some(false),
                    (_, Some(false), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(true), Some(true), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the predecessors of the vertices in the
    /// given `initial` set that are reached by updating the given `variable`, but are *within*
    /// the initial set. Formally:
    ///
    /// $$
    ///    \texttt{VarPreWithin}(v, X) = \\{~(x, c) \mid (x, c) \in X \land \exists y.~(y, c) \in X \land x \xrightarrow{v}_{c} y~\\}
    /// $$
    pub fn var_pre_within(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // set & flip(set) & can_apply_function
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            None,
            |a, b, c| {
                // a & b & c
                match (a, b, c) {
                    (Some(false), _, _) => Some(false),
                    (_, Some(false), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(true), Some(true), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the subset of the `initial` set for which
    /// there exists an outgoing transition using the given `variable`. Formally:
    ///
    /// $$
    ///     \texttt{VarCanPost}(v, X) = \\{~ (x, c) \in X \mid \exists y.~ x \xrightarrow{v}_{c} y ~\\}
    /// $$
    pub fn var_can_post(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // set & can_apply_function
        GraphColoredVertices::new(
            initial.bdd.and(&self.update_functions[variable.0]),
            &self.symbolic_context,
        )
    }

    /// Compute the `GraphColoredVertices` representing the subset of the `initial` set for which
    /// there exists an incoming transition using the given `variable`. Formally:
    ///
    /// $$
    ///     \texttt{VarCanPre}(v, X) = \\{~ (y, c) \in X \mid \exists x.~ x \xrightarrow{v}_{c} y ~\\}
    /// $$
    pub fn var_can_pre(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // flip(flip(set) & can_apply_function)
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_binary_flip_op(
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            Some(symbolic_var),
            biodivine_lib_bdd::op_function::and,
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the subset of the `initial` set for which
    /// there exists an outgoing transition using the given `variable` that leads *outside* of the
    /// `initial` set. Formally:
    ///
    /// $$
    ///     \texttt{VarCanPostOut}(v, X) = \\{~ (x, c) \in X \mid \exists y.~(y, c) \notin X \land x \xrightarrow{v}_{c} y ~\\}
    /// $$
    pub fn var_can_post_out(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // set & !flip(set) & can_apply_function
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            None,
            |a, b, c| {
                // a & !b & c
                match (a, b, c) {
                    (Some(false), _, _) => Some(false),
                    (_, Some(true), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(true), Some(false), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the subset of the `initial` set for which
    /// there exists an incoming transition using the given `variable` that originates *outside* of the
    /// `initial` set. Formally:
    ///
    /// $$
    ///     \texttt{VarCanPreOut}(v, X) = \\{~ (y, c) \in X \mid \exists x.~(x, c) \notin X \land x \xrightarrow{v}_{c} y ~\\}
    /// $$
    pub fn var_can_pre_out(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // flip(!set & flip(set) & can_apply_function)
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            Some(symbolic_var),
            |a, b, c| {
                // !a & b & c
                match (a, b, c) {
                    (Some(true), _, _) => Some(false),
                    (_, Some(false), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(false), Some(true), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the subset of the `initial` set for which
    /// there exists an outgoing transition using the given `variable` that leads *into* the
    /// `initial` set. Formally:
    ///
    /// $$
    ///     \texttt{VarCanPostWithin}(v, X) = \\{~ (x, c) \in X \mid \exists y.~(y, c) \in X \land x \xrightarrow{v}_{c} y ~\\}
    /// $$
    pub fn var_can_post_within(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // set & flip(set) & can_apply_function
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            None,
            |a, b, c| {
                // a & b & c
                match (a, b, c) {
                    (Some(false), _, _) => Some(false),
                    (_, Some(false), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(true), Some(true), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }

    /// Compute the `GraphColoredVertices` representing the subset of the `initial` set for which
    /// there exists an incoming transition using the given `variable` that originates *inside* the
    /// `initial` set. Formally:
    ///
    /// $$
    ///     \texttt{VarCanPreWithin}(v, X) = \\{~ (y, c) \in X \mid \exists x.~(x, c) \in X \land x \xrightarrow{v}_{c} y ~\\}
    /// $$
    pub fn var_can_pre_within(
        &self,
        variable: VariableId,
        initial: &GraphColoredVertices,
    ) -> GraphColoredVertices {
        // flip(set & flip(set) & can_post_function)
        let symbolic_var = self.symbolic_context.state_variables[variable.0];
        let output = Bdd::fused_ternary_flip_op(
            (&initial.bdd, None),
            (&initial.bdd, Some(symbolic_var)),
            (&self.update_functions[variable.0], None),
            Some(symbolic_var),
            |a, b, c| {
                // a & b & c
                match (a, b, c) {
                    (Some(false), _, _) => Some(false),
                    (_, Some(false), _) => Some(false),
                    (_, _, Some(false)) => Some(false),
                    (Some(true), Some(true), Some(true)) => Some(true),
                    _ => None,
                }
            },
        );
        GraphColoredVertices::new(output, &self.symbolic_context)
    }
}

/// Here, we give several operators derived from the variable-specific operators. These have
/// complexity `O(|vars|)` since they are internally represented using the variable-specific
/// operators.
///
/// We provide the following functions:
///  - `post` / `pre`: General successors and predecessors functions.
///  - `can_post` / `can_pre`: Subsets of the initial states that have some successors
///     or predecessors.
///  - `can_post_within` / `can_pre_within`: Subsets of initial states that have some successors
///     / predecessors within the initial set.
///  - `will_post_within` / `will_pre_within`: Subsets of initial states that have all successors
///     / predecessors withing the initial set.
///  - `can_post_out` / `can_pre_out`: Subsets of initial states that have some successors
///     / predecessors outside of the initial set.
///  - `will_post_out` / `will_pre_out`: Subsets of initial states that have all successors
///     / predecessors outside of the initial set.
///
impl SymbolicAsyncGraph {
    /// Compute the result of applying `post` with *all* update functions to the `initial` set.
    pub fn post(&self, initial: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_post(v, initial))
            })
    }

    /// Compute the result of applying `pre` with *all* update functions to the `initial` set.
    pub fn pre(&self, initial: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_pre(v, initial))
            })
    }

    /// Compute the subset of `set` that can perform *some* `post` operation.
    pub fn can_post(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_can_post(v, set))
            })
    }

    /// Compute the subset of `set` that can perform *some* `pre` operation.
    pub fn can_pre(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_can_pre(v, set))
            })
    }

    /// Compute the subset of `set` that can perform *some* `post` operation which leads
    /// to a state within `set`.
    pub fn can_post_within(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_can_post_within(v, set))
            })
    }

    /// Compute the subset of `set` such that *every admissible* `post` operation leads to a state
    /// within the same `set`.
    ///
    /// Note that this also includes states which cannot perform any `post` operation.
    pub fn will_post_within(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(set.clone(), |r, v| r.minus(&self.var_can_post_out(v, set)))
    }

    /// Compute the subset of `set` that can perform *some* `pre` operation which leads
    /// to a state within `set`.
    pub fn can_pre_within(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_can_pre_within(v, set))
            })
    }

    /// Compute the subset of `set` such that *every admissible* `pre` operation leads to a state
    /// within the same `set`.
    ///
    /// Note that this also includes states which cannot perform any `pre` operation.
    pub fn will_pre_within(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(set.clone(), |r, v| r.minus(&self.var_can_pre_out(v, set)))
    }

    /// Compute the subset of `set` that can perform *some* `post` operation which leads
    /// to a state outside of `set`.
    pub fn can_post_out(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_can_post_out(v, set))
            })
    }

    /// Compute the subset of `set` such that *every admissible* `post` operation leads
    /// to a state outside the `set`.
    ///
    /// Note that this also includes states which cannot perform any `post` operation.
    pub fn will_post_out(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network.variables().fold(set.clone(), |r, v| {
            r.minus(&self.var_can_post_within(v, set))
        })
    }

    /// Compute the subset of `set` that can perform *some* `pre` operation which leads
    /// to a state outside of `set`.
    pub fn can_pre_out(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network
            .variables()
            .fold(self.mk_empty_vertices(), |r, v| {
                r.union(&self.var_can_pre_out(v, set))
            })
    }

    /// Compute the subset of `set` such that *every admissible* `pre` operation leads
    /// to a state outside of `set`.
    ///
    /// Note that this also includes states which cannot perform any `pre` operation.
    pub fn will_pre_out(&self, set: &GraphColoredVertices) -> GraphColoredVertices {
        self.network.variables().fold(set.clone(), |r, v| {
            r.minus(&self.var_can_pre_within(v, set))
        })
    }
}

#[cfg(test)]
mod tests {

    /* Basically a copy from of example from tutorial, but tutorials don't count towards coverage. */
    use crate::symbolic_async_graph::SymbolicAsyncGraph;
    use crate::BooleanNetwork;
    use std::convert::TryFrom;

    #[test]
    fn basic_graph_test() {
        let bn = BooleanNetwork::try_from(
            r"
            A -> B
            C -|? B
            $B: A
            C -> A
            B -> A
            A -| A
            $A: C | f(A, B)
        ",
        )
        .unwrap();
        let stg = SymbolicAsyncGraph::new(bn).unwrap();
        let id_b = stg.as_network().as_graph().find_variable("B").unwrap();
        let b_is_true = stg.fix_network_variable(id_b, true);
        let b_is_false = stg.fix_network_variable(id_b, false);

        assert_eq!(
            stg.var_can_pre(id_b, &b_is_true),
            stg.var_post(id_b, &b_is_false)
        );
        assert_eq!(
            stg.var_can_post(id_b, &b_is_false),
            stg.var_pre(id_b, &b_is_true)
        );
        assert_eq!(4.0, stg.can_pre(&b_is_true).vertices().approx_cardinality());
        assert_eq!(
            4.0,
            stg.can_post(&b_is_false).vertices().approx_cardinality()
        );

        let some_color = stg.unit_colors().pick_singleton();
        let b_is_true_with_color = b_is_true.intersect_colors(&some_color);
        let b_is_false_with_color = b_is_false.intersect_colors(&some_color);
        assert_eq!(
            3.0,
            stg.can_pre(&b_is_true_with_color)
                .vertices()
                .approx_cardinality()
        );
        assert_eq!(
            4.0,
            stg.can_post(&b_is_false_with_color)
                .vertices()
                .approx_cardinality()
        );

        assert_ne!(stg.can_pre(&b_is_true), stg.post(&b_is_false));
        assert_ne!(stg.can_post(&b_is_false), stg.pre(&b_is_true));
    }
}