1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
use crate::symbolic_async_graph::{FunctionTable, SymbolicContext};
use crate::{BinaryOp, BooleanNetwork, FnUpdate, ParameterId, VariableId};
use biodivine_lib_bdd::op_function::{and, and_not};
use biodivine_lib_bdd::{
bdd, Bdd, BddValuation, BddVariable, BddVariableSet, BddVariableSetBuilder,
};
use std::convert::TryInto;
impl SymbolicContext {
pub fn new(network: &BooleanNetwork) -> Result<SymbolicContext, String> {
let symbolic_size = network_symbolic_size(network);
if symbolic_size >= u32::from(u16::MAX) {
return Err(format!(
"The network is too large. {} symbolic variables needed, but {} available.",
symbolic_size,
u16::MAX
));
}
let mut builder = BddVariableSetBuilder::new();
let mut state_variables: Vec<BddVariable> = Vec::new();
let mut implicit_function_tables: Vec<Option<FunctionTable>> =
vec![None; network.num_vars()];
let mut explicit_function_tables: Vec<Option<FunctionTable>> =
vec![None; network.num_parameters()];
for variable in network.variables() {
let variable_name = network[variable].get_name();
let state_variable = builder.make_variable(variable_name);
state_variables.push(state_variable);
if let Some(update_function) = network.get_update_function(variable) {
for parameter in update_function.collect_parameters() {
if explicit_function_tables[parameter.0].is_none() {
let parameter_function = &network[parameter];
let arity: u16 = parameter_function.get_arity().try_into().unwrap();
let function_table =
FunctionTable::new(parameter_function.get_name(), arity, &mut builder);
explicit_function_tables[parameter.0] = Some(function_table);
}
}
} else {
let arity: u16 = network.regulators(variable).len().try_into().unwrap();
let function_name = format!("f_{}", variable_name);
let function_table = FunctionTable::new(&function_name, arity, &mut builder);
implicit_function_tables[variable.0] = Some(function_table);
}
}
for i_p in 0..network.num_parameters() {
if explicit_function_tables[i_p].is_none() {
let parameter_name = network[ParameterId(i_p)].get_name();
return Err(format!(
"Integrity error: Uninterpreted function {} declared but not used.",
parameter_name
));
}
}
let explicit_function_tables: Vec<FunctionTable> =
explicit_function_tables.into_iter().flatten().collect();
let mut parameter_variables: Vec<BddVariable> = Vec::new();
for table in &explicit_function_tables {
for p in &table.rows {
parameter_variables.push(*p);
}
}
for table in implicit_function_tables.iter().flatten() {
for p in &table.rows {
parameter_variables.push(*p);
}
}
Ok(SymbolicContext {
bdd: builder.build(),
state_variables,
parameter_variables,
explicit_function_tables,
implicit_function_tables,
})
}
pub fn bdd_variable_set(&self) -> &BddVariableSet {
&self.bdd
}
pub fn state_variables(&self) -> &Vec<BddVariable> {
&self.state_variables
}
pub fn get_implicit_function_table(&self, variable: VariableId) -> &FunctionTable {
let table = &self.implicit_function_tables[variable.0];
let table = table.as_ref().unwrap_or_else(|| {
panic!(
"Variable {:?} does not have an implicit uninterpreted function.",
variable
);
});
table
}
pub fn get_explicit_function_table(&self, parameter: ParameterId) -> &FunctionTable {
&self.explicit_function_tables[parameter.0]
}
pub fn parameter_variables(&self) -> &Vec<BddVariable> {
&self.parameter_variables
}
pub fn mk_constant(&self, value: bool) -> Bdd {
if value {
self.bdd.mk_true()
} else {
self.bdd.mk_false()
}
}
pub fn mk_state_variable_is_true(&self, variable: VariableId) -> Bdd {
self.bdd.mk_var(self.state_variables[variable.0])
}
pub fn mk_uninterpreted_function_is_true(
&self,
parameter: ParameterId,
args: &[VariableId],
) -> Bdd {
let table = &self.explicit_function_tables[parameter.0];
self.mk_function_table_true(table, &self.prepare_args(args))
}
pub fn mk_implicit_function_is_true(&self, variable: VariableId, args: &[VariableId]) -> Bdd {
let table = &self.implicit_function_tables[variable.0];
let table = table.as_ref().unwrap_or_else(|| {
panic!(
"Variable {:?} does not have an implicit uninterpreted function.",
variable
);
});
self.mk_function_table_true(table, &self.prepare_args(args))
}
pub fn mk_fn_update_true(&self, function: &FnUpdate) -> Bdd {
match function {
FnUpdate::Const(value) => self.mk_constant(*value),
FnUpdate::Var(id) => self.mk_state_variable_is_true(*id),
FnUpdate::Not(inner) => self.mk_fn_update_true(inner).not(),
FnUpdate::Param(id, args) => self.mk_uninterpreted_function_is_true(*id, args),
FnUpdate::Binary(op, left, right) => {
let l = self.mk_fn_update_true(left);
let r = self.mk_fn_update_true(right);
match op {
BinaryOp::And => l.and(&r),
BinaryOp::Or => l.or(&r),
BinaryOp::Xor => l.xor(&r),
BinaryOp::Imp => l.imp(&r),
BinaryOp::Iff => l.iff(&r),
}
}
}
}
fn mk_function_table_true(&self, function_table: &FunctionTable, args: &[Bdd]) -> Bdd {
let mut result = self.bdd.mk_true();
for (input_row, output) in function_table {
let row_true = input_row
.into_iter()
.zip(args)
.fold(self.bdd.mk_true(), |result, (i, arg)| {
Bdd::binary_op(&result, arg, if i { and } else { and_not })
});
let output_true = self.bdd.mk_var(output);
result = bdd![result & (row_true => output_true)];
}
result
}
fn instantiate_function_table(
&self,
valuation: &BddValuation,
function_table: &FunctionTable,
args: &[Bdd],
) -> Bdd {
let mut result = self.bdd.mk_false();
for (input_row, output) in function_table {
if valuation[output] {
let input_bdd = input_row
.into_iter()
.zip(args)
.fold(self.bdd.mk_true(), |result, (i, arg)| {
Bdd::binary_op(&result, arg, if i { and } else { and_not })
});
result = bdd![result | input_bdd];
}
}
result
}
pub fn instantiate_implicit_function(
&self,
valuation: &BddValuation,
variable: VariableId,
args: &[VariableId],
) -> Bdd {
let table = &self.implicit_function_tables[variable.0];
let table = table.as_ref().unwrap_or_else(|| {
panic!(
"Variable {:?} does not have an implicit uninterpreted function.",
variable
);
});
self.instantiate_function_table(valuation, table, &self.prepare_args(args))
}
pub fn instantiate_uninterpreted_function(
&self,
valuation: &BddValuation,
parameter: ParameterId,
args: &[VariableId],
) -> Bdd {
let table = &self.explicit_function_tables[parameter.0];
self.instantiate_function_table(valuation, table, &self.prepare_args(args))
}
pub fn instantiate_fn_update(&self, valuation: &BddValuation, function: &FnUpdate) -> Bdd {
match function {
FnUpdate::Const(value) => self.mk_constant(*value),
FnUpdate::Var(id) => self.mk_state_variable_is_true(*id),
FnUpdate::Not(inner) => self.instantiate_fn_update(valuation, inner).not(),
FnUpdate::Param(id, args) => {
self.instantiate_uninterpreted_function(valuation, *id, args)
}
FnUpdate::Binary(op, left, right) => {
let l = self.instantiate_fn_update(valuation, left);
let r = self.instantiate_fn_update(valuation, right);
match op {
BinaryOp::And => l.and(&r),
BinaryOp::Or => l.or(&r),
BinaryOp::Xor => l.xor(&r),
BinaryOp::Imp => l.imp(&r),
BinaryOp::Iff => l.iff(&r),
}
}
}
}
fn prepare_args(&self, args: &[VariableId]) -> Vec<Bdd> {
return args
.iter()
.map(|v| self.mk_state_variable_is_true(*v))
.collect();
}
}
fn arity_to_row_count(arity: u32) -> u32 {
1u32.checked_shl(arity).unwrap_or(u32::MAX)
}
fn network_symbolic_size(network: &BooleanNetwork) -> u32 {
let mut size: u32 = 0;
for parameter_id in network.parameters() {
let arity = network.get_parameter(parameter_id).arity;
size = size.saturating_add(arity_to_row_count(arity))
}
for variable_id in network.variables() {
if network.get_update_function(variable_id).is_none() {
let arity: u32 = network
.regulators(variable_id)
.len()
.try_into()
.unwrap_or(u32::MAX);
size = size.saturating_add(arity_to_row_count(arity))
}
}
size
}
#[cfg(test)]
mod tests {
use crate::biodivine_std::traits::Set;
use crate::symbolic_async_graph::SymbolicAsyncGraph;
use crate::BooleanNetwork;
use std::convert::TryFrom;
#[test]
fn hmox_pathway() {
let model = std::fs::read_to_string("aeon_models/hmox_pathway.aeon").unwrap();
let network = BooleanNetwork::try_from(model.as_str()).unwrap();
let graph = SymbolicAsyncGraph::new(network).unwrap();
assert!(!graph.unit_colored_vertices().is_empty());
}
}